4

Data Abstgéb;iuon and Problem Solvingx\h‘rith JAVA Walls and Mirrors
Iii’ank M. Carrano and Janet J. Prichard © 2001 Addison Wesley

CHAPTER 6
Stacks

Data Abstraction and Problem Solving with JAVA:

Walls and Mirrors
Carrano / Prichard

Data Abstraction and Problem Solving with JAVA Walls and Mirrors; Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley

Figure 6.1

Stack of cafeteria dishes

14’444
NNNNN

Data Abstraction and Problem Solving with JAVA Walls and Mirrors; Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley

Figure 6.2

Traces of the algorithm that checks for balanced braces

Input string Stack as algorithm executes
1. 2. 3. 4., o
{a{b}c} 1. push " {
2. push "{"
{ 3. pop
{ { { 4. pop
Stack empty —> balanced
a{bc
{ { } 1- push n { n
{ 2.push "{"
{ { { 3. pop
Stack not empty —> not balanced
{ab}c}
1. push " {"
{ 2. pop
Stack empty when last "} " encountered =—=>not balanced

Data Abstraction and Problem Solving with JAVA Walls and Mirrors; Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley

Figure 6.3

Implementation of the ADT stack that use a) an array; b) a linked list;
c) an ADT list

(a) (b) (0)
30 <— top 30 < {op 30 < top
20 T 20
10 ¢ 10
Array 20 ADT list

!
'

/|

Linked list

Data Abstraction and Problem Solving with JAVA Walls and Mirrors; Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley

Figure 6.4

An array-based implementation

top items

K 5 13 7 * 0o 0 0 10 oo 00

0 1 2 k MAX STACK-1 -<— Array indexes

Data Abstraction and Problem Solving with JAVA Walls and Mirrors; Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley

Figure 6.5 top

A reference-based
implementation

D

80

<«

60

1o

Data Abstraction and Problem Solving with JAVA Walls and Mirrors; Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley

Figure 6.6

An implementation that uses the ADT list

List position

¢

1 10 |<«—— Top of stack

w

60

Ul

list.size()

Data Abstraction and Problem Solving with JAVA Walls and Mirrors; Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley

Figure 6.7

The action of a postfix calculator when evaluating the expression 2 * (3 + 4)

Key entered Calculator action Stack (bottom to top)
2 push 2 2
3 push 3 23
4 push 4 2 34
+ operand2 = pop stack 4) 2 3
operandl = pop stack (3) 2

result = operandl + operand2 (7) 2

push result 2 7
* operand2 = pop stack (7) 2
operandl = pop stack (2)

result = operandl * operand2 (14)
push result 14

Data Abstraction and Problem Solving with JAVA Walls and Mirrors; Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley

Figure 6.8

A trace of the algorithm that converts the infix expression a - (b + ¢ * d)/e to
postfix form

ch stack (bottom to top) postfixExp

a
a

a

ab

ab

abc

abc

abcd

abcd= Move operators

abcdx + from stack to

abcdx* + postfixExp until " ("
abcdx* +

abcdx* +e Copy operators from
abcdx+e/- stack to post£ixXExp

vo.:+n+o-f-~|m|
|

+ + + + +

* o

I
P e e N e T N N

~
|
~ ~

Data Abstraction and Problem Solving with JAVA Walls and Mirrors; Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley

Figure 6.9
Flight map for HPAIr

Data Abstraction and Problem Solving with JAVA Walls and Mirrors; Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley

Figure 6.10
The stack of cities as you travel a) from P; b) to R; ¢) to X; d) back to R; e) back

to P; f)to W

X

R W

P P
@ (b @ () (e

Data Abstraction and Problem Solving with JAVA Walls and Mirrors; Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley

Figure 6.11

The stack of cities a) allowing revisits and b) after backtracking when revisits
are not allowed

Y
W
T
S Y
W W
P P

Data Abstraction and Problem Solving with JAVA Walls and Mirrors; Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley

Figure 6.12

A trace of the search algorithm, given the flight map in Figure 6-9

Action Reason Contents of stack (bottom to top)
Push P Initialize P

Push R Next unvisited adjacent city PR
Push X Next unvisited adjacent city PRX
Pop X No unvisited adjacent city PR

Pop R No unvisited adjacent city P

Push W Next unvisited adjacent city PW
Push S Next unvisited adjacent city PWS
Push T Next unvisited adjacent city PWST
Pop T No unvisited adjacent city PWS
Pop S No unvisited adjacent city PW
Push Y Next unvisited adjacent city PWY
Push Z Next unvisited adjacent city PWYZ

Data Abstraction and Problem Solving with JAVA Walls and Mirrors; Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley

Figure 6.13
A piece of a flight map

e Y (visited)

® / (visited)

U \V
(visited)

Data Abstraction and Problem Solving with JAVA Walls and Mirrors; Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley

Figure 6.14
Visiting city P, then R, then X: a) box trace versus b) stack

(a) Box trace:

orJ_gJ._nCJJ.:y = P orng._ncn.:y o= R orlg:!.nC:L‘l':y - = X

destinationCity=/Z2 destinationCity=/2 destinationCity=/Z2
(b) Stack:

X |<€— top

R

P

Data Abstraction and Problem Solving with JAVA Walls and Mirrors; Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley

Figure 6.15

Backtracking from city X, then R, then P: a) box trace versus b) stack

(a) Box trace:

originCity = |7 :origincity =R : :originCity =X :

destinationCity =17 :destinationcity=z : :destinationcity=z :
(b) Stack:

X < top

R R

P P P

Data Abstraction and Problem Solving with JAVA Walls and Mirrors; Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley

Figure 6.16

Flight map for Self-Test Exercise 9 and Exercise 11

Y
o e

Data Abstraction and Problem Solving with JAVA Walls and Mirrors; Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley

Figure 6.17

Railroad switching system for Exercise 2

Data Abstraction and Problem Solving with JAVA Walls and Mirrors; Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley

Figure 6.18
Adjacency list for the flight map in Figure 6-9

Pl o&——T—» R —1—» W
Q| —t—» X
| x]
|]

r| >W/
W| e&——>» S —r1—» Y
‘U

«—

/]

